Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic Generation of Dense Non-rigid Optical Flow (1812.01946v5)

Published 5 Dec 2018 in cs.CV

Abstract: There hardly exists any large-scale datasets with dense optical flow of non-rigid motion from real-world imagery as of today. The reason lies mainly in the required setup to derive ground truth optical flows: a series of images with known camera poses along its trajectory, and an accurate 3D model from a textured scene. Human annotation is not only too tedious for large databases, it can simply hardly contribute to accurate optical flow. To circumvent the need for manual annotation, we propose a framework to automatically generate optical flow from real-world videos. The method extracts and matches objects from video frames to compute initial constraints, and applies a deformation over the objects of interest to obtain dense optical flow fields. We propose several ways to augment the optical flow variations. Extensive experimental results show that training on our automatically generated optical flow outperforms methods that are trained on rigid synthetic data using FlowNet-S, LiteFlowNet, PWC-Net, and RAFT. Datasets and implementation of our optical flow generation framework are released at https://github.com/lhoangan/arap_flow

Citations (2)

Summary

We haven't generated a summary for this paper yet.