Papers
Topics
Authors
Recent
Search
2000 character limit reached

Visual Attention for Behavioral Cloning in Autonomous Driving

Published 5 Dec 2018 in cs.CV | (1812.01802v1)

Abstract: The goal of our work is to use visual attention to enhance autonomous driving performance. We present two methods of predicting visual attention maps. The first method is a supervised learning approach in which we collect eye-gaze data for the task of driving and use this to train a model for predicting the attention map. The second method is a novel unsupervised approach where we train a model to learn to predict attention as it learns to drive a car. Finally, we present a comparative study of our results and show that the supervised approach for predicting attention when incorporated performs better than other approaches.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.