Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boltzmann Generators -- Sampling Equilibrium States of Many-Body Systems with Deep Learning (1812.01729v2)

Published 4 Dec 2018 in stat.ML, cond-mat.stat-mech, cs.LG, and physics.chem-ph

Abstract: Computing equilibrium states in condensed-matter many-body systems, such as solvated proteins, is a long-standing challenge. Lacking methods for generating statistically independent equilibrium samples in "one shot", vast computational effort is invested for simulating these system in small steps, e.g., using Molecular Dynamics. Combining deep learning and statistical mechanics, we here develop Boltzmann Generators, that are shown to generate unbiased one-shot equilibrium samples of representative condensed matter systems and proteins. Boltzmann Generators use neural networks to learn a coordinate transformation of the complex configurational equilibrium distribution to a distribution that can be easily sampled. Accurate computation of free energy differences and discovery of new configurations are demonstrated, providing a statistical mechanics tool that can avoid rare events during sampling without prior knowledge of reaction coordinates.

Citations (29)

Summary

We haven't generated a summary for this paper yet.