Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Contributions to Biclustering of Microarray Data Using Formal Concept Analysis (1811.09562v1)

Published 23 Nov 2018 in cs.LG and stat.ML

Abstract: Biclustering is an unsupervised data mining technique that aims to unveil patterns (biclusters) from gene expression data matrices. In the framework of this thesis, we propose new biclustering algorithms for microarray data. The latter is done using data mining techniques. The objective is to identify positively and negatively correlated biclusters. This thesis is divided into two part: In the first part, we present an overview of the pattern-mining techniques and the biclustering of microarray data. In the second part, we present our proposed biclustering algorithms where we rely on two axes. In the first axis, we initially focus on extracting biclusters of positive correlations. For this, we use both Formal Concept Analysis and Association Rules. In the second axis, we focus on the extraction of negatively correlated biclusters. The performed experimental studies highlight the very promising results offered by the proposed algorithms. Our biclustering algorithms are evaluated and compared statistically and biologically.

Summary

We haven't generated a summary for this paper yet.