Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Representation Learning of Pedestrian Trajectories Using Actor-Critic Sequence-to-Sequence Autoencoder (1811.08069v1)

Published 20 Nov 2018 in cs.LG and stat.ML

Abstract: Representation learning of pedestrian trajectories transforms variable-length timestamp-coordinate tuples of a trajectory into a fixed-length vector representation that summarizes spatiotemporal characteristics. It is a crucial technique to connect feature-based data mining with trajectory data. Trajectory representation is a challenging problem, because both environmental constraints (e.g., wall partitions) and temporal user dynamics should be meticulously considered and accounted for. Furthermore, traditional sequence-to-sequence autoencoders using maximum log-likelihood often require dataset covering all the possible spatiotemporal characteristics to perform well. This is infeasible or impractical in reality. We propose TREP, a practical pedestrian trajectory representation learning algorithm which captures the environmental constraints and the pedestrian dynamics without the need of any training dataset. By formulating a sequence-to-sequence autoencoder with a spatial-aware objective function under the paradigm of actor-critic reinforcement learning, TREP intelligently encodes spatiotemporal characteristics of trajectories with the capability of handling diverse trajectory patterns. Extensive experiments on both synthetic and real datasets validate the high fidelity of TREP to represent trajectories.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.