Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PreTraM: Self-Supervised Pre-training via Connecting Trajectory and Map (2204.10435v1)

Published 21 Apr 2022 in cs.CV and cs.AI

Abstract: Deep learning has recently achieved significant progress in trajectory forecasting. However, the scarcity of trajectory data inhibits the data-hungry deep-learning models from learning good representations. While mature representation learning methods exist in computer vision and natural language processing, these pre-training methods require large-scale data. It is hard to replicate these approaches in trajectory forecasting due to the lack of adequate trajectory data (e.g., 34K samples in the nuScenes dataset). To work around the scarcity of trajectory data, we resort to another data modality closely related to trajectories-HD-maps, which is abundantly provided in existing datasets. In this paper, we propose PreTraM, a self-supervised pre-training scheme via connecting trajectories and maps for trajectory forecasting. Specifically, PreTraM consists of two parts: 1) Trajectory-Map Contrastive Learning, where we project trajectories and maps to a shared embedding space with cross-modal contrastive learning, and 2) Map Contrastive Learning, where we enhance map representation with contrastive learning on large quantities of HD-maps. On top of popular baselines such as AgentFormer and Trajectron++, PreTraM boosts their performance by 5.5% and 6.9% relatively in FDE-10 on the challenging nuScenes dataset. We show that PreTraM improves data efficiency and scales well with model size.

Citations (24)

Summary

We haven't generated a summary for this paper yet.