Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable Logo Recognition using Proxies (1811.08009v1)

Published 19 Nov 2018 in cs.CV and cs.LG

Abstract: Logo recognition is the task of identifying and classifying logos. Logo recognition is a challenging problem as there is no clear definition of a logo and there are huge variations of logos, brands and re-training to cover every variation is impractical. In this paper, we formulate logo recognition as a few-shot object detection problem. The two main components in our pipeline are universal logo detector and few-shot logo recognizer. The universal logo detector is a class-agnostic deep object detector network which tries to learn the characteristics of what makes a logo. It predicts bounding boxes on likely logo regions. These logo regions are then classified by logo recognizer using nearest neighbor search, trained by triplet loss using proxies. We also annotated a first of its kind product logo dataset containing 2000 logos from 295K images collected from Amazon called PL2K. Our pipeline achieves 97% recall with 0.6 mAP on PL2K test dataset and state-of-the-art 0.565 mAP on the publicly available FlickrLogos-32 test set without fine-tuning.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com