Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gaussian Process based Passivation of a Class of Nonlinear Systems with Unknown Dynamics (1811.06648v1)

Published 16 Nov 2018 in cs.SY

Abstract: The paper addresses the problem of passivation of a class of nonlinear systems where the dynamics are unknown. For this purpose, we use the highly flexible, data-driven Gaussian process regression for the identification of the unknown dynamics for feed-forward compensation. The closed loop system of the nonlinear system, the Gaussian process model and a feedback control law is guaranteed to be semi-passive with a specific probability. The predicted variance of the Gaussian process regression is used to bound the model error which additionally allows to specify the state space region where the closed-loop system behaves passive. Finally, the theoretical results are illustrated by a simulation.

Citations (2)

Summary

We haven't generated a summary for this paper yet.