Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Template Matching for Offline Handwritten Chinese Character Recognition (1811.06347v1)

Published 15 Nov 2018 in cs.CV

Abstract: Just like its remarkable achievements in many computer vision tasks, the convolutional neural networks (CNN) provide an end-to-end solution in handwritten Chinese character recognition (HCCR) with great success. However, the process of learning discriminative features for image recognition is difficult in cases where little data is available. In this paper, we propose a novel method for learning siamese neural network which employ a special structure to predict the similarity between handwritten Chinese characters and template images. The optimization of siamese neural network can be treated as a simple binary classification problem. When the training process has been finished, the powerful discriminative features help us to generalize the predictive power not just to new data, but to entirely new classes that never appear in the training set. Experiments performed on the ICDAR-2013 offline HCCR datasets have shown that the proposed method has a very promising generalization ability to the new classes that never appear in the training set.

Citations (19)

Summary

We haven't generated a summary for this paper yet.