Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bias Disparity in Recommendation Systems (1811.01461v1)

Published 4 Nov 2018 in cs.IR and cs.CY

Abstract: Recommender systems have been applied successfully in a number of different domains, such as, entertainment, commerce, and employment. Their success lies in their ability to exploit the collective behavior of users in order to deliver highly targeted, personalized recommendations. Given that recommenders learn from user preferences, they incorporate different biases that users exhibit in the input data. More importantly, there are cases where recommenders may amplify such biases, leading to the phenomenon of bias disparity. In this short paper, we present a preliminary experimental study on synthetic data, where we investigate different conditions under which a recommender exhibits bias disparity, and the long-term effect of recommendations on data bias. We also consider a simple re-ranking algorithm for reducing bias disparity, and present some observations for data disparity on real data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Virginia Tsintzou (1 paper)
  2. Evaggelia Pitoura (26 papers)
  3. Panayiotis Tsaparas (12 papers)
Citations (65)