Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Supervised learning of an opto-magnetic neural network with ultrashort laser pulses (1811.01375v2)

Published 4 Nov 2018 in cs.ET and physics.app-ph

Abstract: The explosive growth of data and its related energy consumption is pushing the need to develop energy-efficient brain-inspired schemes and materials for data processing and storage. Here, we demonstrate experimentally that Co/Pt films can be used as artificial synapses by manipulating their magnetization state using circularly-polarized ultrashort optical pulses at room temperature. We also show an efficient implementation of supervised perceptron learning on an opto-magnetic neural network, built from such magnetic synapses. Importantly, we demonstrate that the optimization of synaptic weights can be achieved using a global feedback mechanism, such that the learning does not rely on external storage or additional optimization schemes. These results suggest there is high potential for realizing artificial neural networks using optically-controlled magnetization in technologically relevant materials, that can learn not only fast but also energy-efficient.

Citations (18)

Summary

We haven't generated a summary for this paper yet.