Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluating Text GANs as Language Models (1810.12686v2)

Published 30 Oct 2018 in cs.CL

Abstract: Generative Adversarial Networks (GANs) are a promising approach for text generation that, unlike traditional LLMs (LM), does not suffer from the problem of ``exposure bias''. However, A major hurdle for understanding the potential of GANs for text generation is the lack of a clear evaluation metric. In this work, we propose to approximate the distribution of text generated by a GAN, which permits evaluating them with traditional probability-based LM metrics. We apply our approximation procedure on several GAN-based models and show that they currently perform substantially worse than state-of-the-art LMs. Our evaluation procedure promotes better understanding of the relation between GANs and LMs, and can accelerate progress in GAN-based text generation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Guy Tevet (13 papers)
  2. Gavriel Habib (5 papers)
  3. Vered Shwartz (49 papers)
  4. Jonathan Berant (107 papers)
Citations (31)