Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dermatologist Level Dermoscopy Skin Cancer Classification Using Different Deep Learning Convolutional Neural Networks Algorithms (1810.10348v1)

Published 21 Oct 2018 in cs.CV, cs.LG, and stat.ML

Abstract: In this paper, the effectiveness and capability of convolutional neural networks have been studied in the classification of 8 skin diseases. Different pre-trained state-of-the-art architectures (DenseNet 201, ResNet 152, Inception v3, InceptionResNet v2) were used and applied on 10135 dermoscopy skin images in total (HAM10000: 10015, PH2: 120). The utilized dataset includes 8 diagnostic categories - melanoma, melanocytic nevi, basal cell carcinoma, benign keratosis, actinic keratosis and intraepithelial carcinoma, dermatofibroma, vascular lesions, and atypical nevi. The aim is to compare the ability of deep learning with the performance of highly trained dermatologists. Overall, the mean results show that all deep learning models outperformed dermatologists (at least 11%). The best ROC AUC values for melanoma and basal cell carcinoma are 94.40% (ResNet 152) and 99.30% (DenseNet 201) versus 82.26% and 88.82% of dermatologists, respectively. Also, DenseNet 201 had the highest macro and micro averaged AUC values for overall classification (98.16%, 98.79%, respectively).

Citations (94)

Summary

We haven't generated a summary for this paper yet.