Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transfer learning with class-weighted and focal loss function for automatic skin cancer classification (2009.05977v1)

Published 13 Sep 2020 in cs.AI

Abstract: Skin cancer is by far in top-3 of the world's most common cancer. Among different skin cancer types, melanoma is particularly dangerous because of its ability to metastasize. Early detection is the key to success in skin cancer treatment. However, skin cancer diagnosis is still a challenge, even for experienced dermatologists, due to strong resemblances between benign and malignant lesions. To aid dermatologists in skin cancer diagnosis, we developed a deep learning system that can effectively and automatically classify skin lesions into one of the seven classes: (1) Actinic Keratoses, (2) Basal Cell Carcinoma, (3) Benign Keratosis, (4) Dermatofibroma, (5) Melanocytic nevi, (6) Melanoma, (7) Vascular Skin Lesion. The HAM10000 dataset was used to train the system. An end-to-end deep learning process, transfer learning technique, utilizing multiple pre-trained models, combining with class-weighted and focal loss were applied for the classification process. The result was that our ensemble of modified ResNet50 models can classify skin lesions into one of the seven classes with top-1, top-2 and top-3 accuracy 93%, 97% and 99%, respectively. This deep learning system can potentially be integrated into computer-aided diagnosis systems that support dermatologists in skin cancer diagnosis.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Duyen N. T. Le (1 paper)
  2. Hieu X. Le (3 papers)
  3. Lua T. Ngo (1 paper)
  4. Hoan T. Ngo (1 paper)
Citations (40)

Summary

We haven't generated a summary for this paper yet.