Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Dense CNN approach for skin lesion classification (1807.06416v2)

Published 17 Jul 2018 in cs.CV

Abstract: This article presents a Deep CNN, based on the DenseNet architecture jointly with a highly discriminating learning methodology, in order to classify seven kinds of skin lesions: Melanoma, Melanocytic nevus, Basal cell carcinoma, Actinic keratosis / Bowen's disease, Benign keratosis, Dermatofibroma, Vascular lesion. In particular a 61 layers DenseNet, pre-trained on IMAGENET dataset, has been fine-tuned on ISIC 2018 Task 3 Challenge Dataset exploiting a Center Loss function.

Citations (5)

Summary

We haven't generated a summary for this paper yet.