Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-class Skin Cancer Classification Architecture Based on Deep Convolutional Neural Network (2303.07520v1)

Published 13 Mar 2023 in cs.CV

Abstract: Skin cancer detection is challenging since different types of skin lesions share high similarities. This paper proposes a computer-based deep learning approach that will accurately identify different kinds of skin lesions. Deep learning approaches can detect skin cancer very accurately since the models learn each pixel of an image. Sometimes humans can get confused by the similarities of the skin lesions, which we can minimize by involving the machine. However, not all deep learning approaches can give better predictions. Some deep learning models have limitations, leading the model to a false-positive result. We have introduced several deep learning models to classify skin lesions to distinguish skin cancer from different types of skin lesions. Before classifying the skin lesions, data preprocessing and data augmentation methods are used. Finally, a Convolutional Neural Network (CNN) model and six transfer learning models such as Resnet-50, VGG-16, Densenet, Mobilenet, Inceptionv3, and Xception are applied to the publically available benchmark HAM10000 dataset to classify seven classes of skin lesions and to conduct a comparative analysis. The models will detect skin cancer by differentiating the cancerous cell from the non-cancerous ones. The models performance is measured using performance metrics such as precision, recall, f1 score, and accuracy. We receive accuracy of 90, 88, 88, 87, 82, and 77 percent for inceptionv3, Xception, Densenet, Mobilenet, Resnet, CNN, and VGG16, respectively. Furthermore, we develop five different stacking models such as inceptionv3-inceptionv3, Densenet-mobilenet, inceptionv3-Xception, Resnet50-Vgg16, and stack-six for classifying the skin lesions and found that the stacking models perform poorly. We achieve the highest accuracy of 78 percent among all the stacking models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Mst Shapna Akter (23 papers)
  2. Hossain Shahriar (30 papers)
  3. Sweta Sneha (3 papers)
  4. Alfredo Cuzzocrea (19 papers)
Citations (23)