Papers
Topics
Authors
Recent
Search
2000 character limit reached

Approximating the Quadratic Transportation Metric in Near-Linear Time

Published 23 Oct 2018 in cs.DS and math.OC | (1810.10046v2)

Abstract: Computing the quadratic transportation metric (also called the $2$-Wasserstein distance or root mean square distance) between two point clouds, or, more generally, two discrete distributions, is a fundamental problem in machine learning, statistics, computer graphics, and theoretical computer science. A long line of work has culminated in a sophisticated geometric algorithm due to Agarwal and Sharathkumar in 2014, which runs in time $\tilde{O}(n{3/2})$, where $n$ is the number of points. However, obtaining faster algorithms has proven difficult since the $2$-Wasserstein distance is known to have poor sketching and embedding properties, which limits the effectiveness of geometric approaches. In this paper, we give an extremely simple deterministic algorithm with $\tilde{O}(n)$ runtime by using a completely different approach based on entropic regularization, approximate Sinkhorn scaling, and low-rank approximations of Gaussian kernel matrices. We give explicit dependence of our algorithm on the dimension and precision of the approximation.

Citations (22)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.