Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Saliency guided deep network for weakly-supervised image segmentation (1810.08378v1)

Published 19 Oct 2018 in cs.CV

Abstract: Weakly-supervised image segmentation is an important task in computer vision. A key problem is how to obtain high quality objects location from image-level category. Classification activation mapping is a common method which can be used to generate high-precise object location cues. However these location cues are generally very sparse and small such that they can not provide effective information for image segmentation. In this paper, we propose a saliency guided image segmentation network to resolve this problem. We employ a self-attention saliency method to generate subtle saliency maps, and render the location cues grow as seeds by seeded region growing method to expand pixel-level labels extent. In the process of seeds growing, we use the saliency values to weight the similarity between pixels to control the growing. Therefore saliency information could help generate discriminative object regions, and the effects of wrong salient pixels can be suppressed efficiently. Experimental results on a common segmentation dataset PASCAL VOC2012 demonstrate the effectiveness of our method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Fengdong Sun (2 papers)
  2. Wenhui Li (41 papers)
Citations (40)