Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solution for Large-Scale Hierarchical Object Detection Datasets with Incomplete Annotation and Data Imbalance (1810.06208v1)

Published 15 Oct 2018 in cs.CV

Abstract: This report demonstrates our solution for the Open Images 2018 Challenge. Based on our detailed analysis on the Open Images Datasets (OID), it is found that there are four typical features: large-scale, hierarchical tag system, severe annotation incompleteness and data imbalance. Considering these characteristics, an amount of strategies are employed, including SNIPER, soft sampling, class-aware sampling (CAS), hierarchical non-maximum suppression (HNMS) and so on. In virtue of these effective strategies, and further using the powerful SENet154 armed with feature pyramid module and deformable ROIalign as the backbone, our best single model could achieve a mAP of 56.9%. After a further ensemble with 9 models, the final mAP is boosted to 62.2% in the public leaderboard (ranked the 2nd place) and 58.6% in the private leaderboard (ranked the 3rd place, slightly inferior to the 1st place by only 0.04 point).

Citations (18)

Summary

We haven't generated a summary for this paper yet.