Papers
Topics
Authors
Recent
2000 character limit reached

Training Generative Adversarial Networks with Binary Neurons by End-to-end Backpropagation (1810.04714v1)

Published 10 Oct 2018 in cs.LG and stat.ML

Abstract: We propose the BinaryGAN, a novel generative adversarial network (GAN) that uses binary neurons at the output layer of the generator. We employ the sigmoid-adjusted straight-through estimators to estimate the gradients for the binary neurons and train the whole network by end-to-end backpropogation. The proposed model is able to directly generate binary-valued predictions at test time. We implement such a model to generate binarized MNIST digits and experimentally compare the performance for different types of binary neurons, GAN objectives and network architectures. Although the results are still preliminary, we show that it is possible to train a GAN that has binary neurons and that the use of gradient estimators can be a promising direction for modeling discrete distributions with GANs. For reproducibility, the source code is available at https://github.com/salu133445/binarygan .

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.