Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Neural Text Simplification Model with Simplified Corpora (1810.04428v1)

Published 10 Oct 2018 in cs.CL

Abstract: Text simplification (TS) can be viewed as monolingual translation task, translating between text variations within a single language. Recent neural TS models draw on insights from neural machine translation to learn lexical simplification and content reduction using encoder-decoder model. But different from neural machine translation, we cannot obtain enough ordinary and simplified sentence pairs for TS, which are expensive and time-consuming to build. Target-side simplified sentences plays an important role in boosting fluency for statistical TS, and we investigate the use of simplified sentences to train, with no changes to the network architecture. We propose to pair simple training sentence with a synthetic ordinary sentence via back-translation, and treating this synthetic data as additional training data. We train encoder-decoder model using synthetic sentence pairs and original sentence pairs, which can obtain substantial improvements on the available WikiLarge data and WikiSmall data compared with the state-of-the-art methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Jipeng Qiang (22 papers)
Citations (6)