Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 68 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

University rankings from the revealed preferences of the applicants (1810.04087v6)

Published 9 Oct 2018 in stat.AP, econ.GN, and q-fin.EC

Abstract: A methodology is presented to rank universities on the basis of the lists of programmes the students applied for. We exploit a crucial feature of the centralised assignment system to higher education in Hungary: a student is admitted to the first programme where the score limit is achieved. This makes it possible to derive a partial preference order of each applicant. Our approach integrates the information from all students participating in the system, is free of multicollinearity among the indicators, and contains few ad hoc parameters. The procedure is implemented to rank faculties in the Hungarian higher education between 2001 and 2016. We demonstrate that the ranking given by the least squares method has favourable theoretical properties, is robust with respect to the aggregation of preferences, and performs well in practice. The suggested ranking is worth considering as a reasonable alternative to the standard composite indices.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.