Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable Micro-planned Generation of Discourse from Structured Data (1810.02889v3)

Published 5 Oct 2018 in cs.CL

Abstract: We present a framework for generating natural language description from structured data such as tables; the problem comes under the category of data-to-text natural language generation (NLG). Modern data-to-text NLG systems typically employ end-to-end statistical and neural architectures that learn from a limited amount of task-specific labeled data, and therefore, exhibit limited scalability, domain-adaptability, and interpretability. Unlike these systems, ours is a modular, pipeline-based approach, and does not require task-specific parallel data. It rather relies on monolingual corpora and basic off-the-shelf NLP tools. This makes our system more scalable and easily adaptable to newer domains. Our system employs a 3-staged pipeline that: (i) converts entries in the structured data to canonical form, (ii) generates simple sentences for each atomic entry in the canonicalized representation, and (iii) combines the sentences to produce a coherent, fluent and adequate paragraph description through sentence compounding and co-reference replacement modules. Experiments on a benchmark mixed-domain dataset curated for paragraph description from tables reveals the superiority of our system over existing data-to-text approaches. We also demonstrate the robustness of our system in accepting other popular datasets covering diverse data types such as Knowledge Graphs and Key-Value maps.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Anirban Laha (12 papers)
  2. Parag Jain (14 papers)
  3. Abhijit Mishra (20 papers)
  4. Karthik Sankaranarayanan (22 papers)
Citations (24)