Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatially-weighted Anomaly Detection (1810.02607v1)

Published 5 Oct 2018 in cs.CV and cs.AI

Abstract: Many types of anomaly detection methods have been proposed recently, and applied to a wide variety of fields including medical screening and production quality checking. Some methods have utilized images, and, in some cases, a part of the anomaly images is known beforehand. However, this kind of information is dismissed by previous methods, because the methods can only utilize a normal pattern. Moreover, the previous methods suffer a decrease in accuracy due to negative effects from surrounding noises. In this study, we propose a spatially-weighted anomaly detection method (SPADE) that utilizes all of the known patterns and lessens the vulnerability to ambient noises by applying Grad-CAM, which is the visualization method of a CNN. We evaluated our method quantitatively using two datasets, the MNIST dataset with noise and a dataset based on a brief screening test for dementia.

Citations (3)

Summary

We haven't generated a summary for this paper yet.