Papers
Topics
Authors
Recent
2000 character limit reached

Disambiguating Music Artists at Scale with Audio Metric Learning

Published 3 Oct 2018 in cs.IR, cs.AI, cs.LG, cs.SD, and stat.ML | (1810.01807v1)

Abstract: We address the problem of disambiguating large scale catalogs through the definition of an unknown artist clustering task. We explore the use of metric learning techniques to learn artist embeddings directly from audio, and using a dedicated homonym artists dataset, we compare our method with a recent approach that learn similar embeddings using artist classifiers. While both systems have the ability to disambiguate unknown artists relying exclusively on audio, we show that our system is more suitable in the case when enough audio data is available for each artist in the train dataset. We also propose a new negative sampling method for metric learning that takes advantage of side information such as music genre during the learning phase and shows promising results for the artist clustering task.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.