Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 Pro
2000 character limit reached

On an oscillatory integral involving a homogeneous form (1810.00328v1)

Published 30 Sep 2018 in math.NT and math.CA

Abstract: Let $F \in \mathbb{R}[x_1, \ldots, x_n]$ be a homogeneous form of degree $d > 1$ satisfying $(n - \dim V_{F}*) > 4$, where $V_F*$ is the singular locus of $V(F) = { \mathbf{z} \in {\mathbb{C}}n: F(\mathbf{z}) = 0 }$. Suppose there exists $\mathbf{x}0 \in (0,1)n \cap (V(F) \backslash V_F*)$. Let $\mathbf{t} = (t_1, \ldots, t_n) \in \mathbb{R}n$. Then for a smooth function $\varpi:\mathbb{R}n \rightarrow \mathbb{R}$ with its support contained in a small neighbourhood of $\mathbf{x}_0$, we prove $$ \Big{|} \int{0}{\infty} \cdots \int_{0}{\infty} \varpi(\mathbf{x}) x_1{i t_1} \cdots x_n{i t_n} e{2 \pi i \tau F(\mathbf{x})} d \mathbf{x} \Big{|} \ll \min { 1, |\tau|{-1} }, $$ where the implicit constant is independent of $\tau$ and $\mathbf{t}$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.