Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantitative twisted recurrence properties for piecewise expanding maps on $[0,1]^d$ (2503.16030v1)

Published 20 Mar 2025 in math.DS

Abstract: Let $T:[0,1]d \rightarrow[0,1]d$ be a piecewise expanding map with an absolutely continuous (with respect to the $d$-dimensional Lebesgue measure $m_d$) $T$-invariant probability measure $\mu$. Let $\left{\mathbf{r}n\right}$ be a sequence of vectors satisfying the conditons that $\mathbf{r}_n=\left(r{n, 1}, \ldots, r_{n, d}\right) \in\left(\mathbb{R}{\geq 0}\right)d$, the sequence $\left{\frac{\max _{1 \leq i \leq d}\hspace{1ex}r{n, i}}{\min {1 \leq i \leq d}\hspace{1ex}r{n, i}}\right}$ is bounded and $\lim {n \rightarrow \infty} \max _{1 \leq i \leq d}r{n, i}=0$. Let $\left{\delta_n\right}$ be a sequence of non-negative real numbers with $\lim _{n \rightarrow \infty} \delta_n=0$. Under the assumptions that $\mu$ is exponentially mixing and its density is sufficiently regular, we prove that the $\mu$-measure of the following sets $$\mathcal{R}f\left(\left{\mathbf{r}_n\right}\right)=\left{\mathbf{x} \in[0,1]d: Tn \mathbf{x} \in R\left(f(\mathbf{x}), \mathbf{r}_n\right) \text { for infinitely many } n \in \mathbb{N} \right} $$ and $$\mathcal{R}{f \times}\left(\left{\delta_n\right}\right)=\left{\mathbf{x} \in[0,1]d: Tn \mathbf{x} \in H\left(f(\mathbf{x}), \delta_n\right) \text { for infinitely many } n \in \mathbb{N} \right}$$ obeys zero-full laws determined by the convergence or divergence of natural volume sums. Here, $R(f(\mathbf{x}), \mathbf{r}_n)$ and $H(f(\mathbf{x}), \delta_n)$ represent targets as, respectively, coordinate-parallel hyperrectangles with bounded aspect ratio, and hyperboloids, both centered at $f(\mathbf{x})$. $f: [0,1]d \rightarrow [0,1]d$ is a piecewise Lipschitz vector function. Our results not only unify quantitative recurrence properties and the shrinking target problem for piecewise expanding maps on $[0,1]d$, but also reveal that the two problems and cross-component recurrence can coexist in distinct directions on $[0,1]d$.

Summary

We haven't generated a summary for this paper yet.