Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Laplacian Regularized Graph Convolutional Networks for Semi-supervised Learning (1809.09839v1)

Published 26 Sep 2018 in cs.CV

Abstract: Recently, graph convolutional network (GCN) has been widely used for semi-supervised classification and deep feature representation on graph-structured data. However, existing GCN generally fails to consider the local invariance constraint in learning and representation process. That is, if two data points Xi and Xj are close in the intrinsic geometry of the data distribution, then their labels/representations should also be close to each other. This is known as local invariance assumption which plays an essential role in the development of various kinds of traditional algorithms, such as dimensionality reduction and semi-supervised learning, in machine learning area. To overcome this limitation, we introduce a graph Laplacian GCN (gLGCN) approach for graph data representation and semi-supervised classification. The proposed gLGCN model is capable of encoding both graph structure and node features together while maintains the local invariance constraint naturally for robust data representation and semi-supervised classification. Experiments show the benefit of the benefits the proposed gLGCN network.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Bo Jiang (235 papers)
  2. Doudou Lin (4 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.