Papers
Topics
Authors
Recent
Search
2000 character limit reached

Unsupervised Image to Sequence Translation with Canvas-Drawer Networks

Published 21 Sep 2018 in cs.CV | (1809.08340v2)

Abstract: Encoding images as a series of high-level constructs, such as brush strokes or discrete shapes, can often be key to both human and machine understanding. In many cases, however, data is only available in pixel form. We present a method for generating images directly in a high-level domain (e.g. brush strokes), without the need for real pairwise data. Specifically, we train a "canvas" network to imitate the mapping of high-level constructs to pixels, followed by a high-level "drawing" network which is optimized through this mapping towards solving a desired image recreation or translation task. We successfully discover sequential vector representations of symbols, large sketches, and 3D objects, utilizing only pixel data. We display applications of our method in image segmentation, and present several ablation studies comparing various configurations.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.