Papers
Topics
Authors
Recent
Search
2000 character limit reached

Extending Modular Semantics for Bipolar Weighted Argumentation (Technical Report)

Published 19 Sep 2018 in cs.AI | (1809.07133v2)

Abstract: Weighted bipolar argumentation frameworks offer a tool for decision support and social media analysis. Arguments are evaluated by an iterative procedure that takes initial weights and attack and support relations into account. Until recently, convergence of these iterative procedures was not very well understood in cyclic graphs. Mossakowski and Neuhaus recently introduced a unification of different approaches and proved first convergence and divergence results. We build up on this work, simplify and generalize convergence results and complement them with runtime guarantees. As it turns out, there is a tradeoff between semantics' convergence guarantees and their ability to move strength values away from the initial weights. We demonstrate that divergence problems can be avoided without this tradeoff by continuizing semantics. Semantically, we extend the framework with a Duality property that assures a symmetric impact of attack and support relations. We also present a Java implementation of modular semantics and explain the practical usefulness of the theoretical ideas.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.