Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

InfoSSM: Interpretable Unsupervised Learning of Nonparametric State-Space Model for Multi-modal Dynamics (1809.07109v2)

Published 19 Sep 2018 in stat.ML, cs.LG, and stat.AP

Abstract: The goal of system identification is to learn about underlying physics dynamics behind the time-series data. To model the probabilistic and nonparametric dynamics model, Gaussian process (GP) have been widely used; GP can estimate the uncertainty of prediction and avoid over-fitting. Traditional GPSSMs, however, are based on Gaussian transition model, thus often have difficulty in describing a more complex transition model, e.g. aircraft motions. To resolve the challenge, this paper proposes a framework using multiple GP transition models which is capable of describing multi-modal dynamics. Furthermore, we extend the model to the information-theoretic framework, the so-called InfoSSM, by introducing a mutual information regularizer helping the model to learn interpretable and distinguishable multiple dynamics models. Two illustrative numerical experiments in simple Dubins vehicle and high-fidelity flight simulator are presented to demonstrate the performance and interpretability of the proposed model. Finally, this paper introduces a framework using InfoSSM with Bayesian filtering for air traffic control tracking.

Summary

We haven't generated a summary for this paper yet.