Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dual Memory Network Model for Biased Product Review Classification (1809.05807v1)

Published 16 Sep 2018 in cs.CL and cs.AI

Abstract: In sentiment analysis (SA) of product reviews, both user and product information are proven to be useful. Current tasks handle user profile and product information in a unified model which may not be able to learn salient features of users and products effectively. In this work, we propose a dual user and product memory network (DUPMN) model to learn user profiles and product reviews using separate memory networks. Then, the two representations are used jointly for sentiment prediction. The use of separate models aims to capture user profiles and product information more effectively. Compared to state-of-the-art unified prediction models, the evaluations on three benchmark datasets, IMDB, Yelp13, and Yelp14, show that our dual learning model gives performance gain of 0.6%, 1.2%, and 0.9%, respectively. The improvements are also deemed very significant measured by p-values.

Citations (13)

Summary

We haven't generated a summary for this paper yet.