Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Brain decoding from functional MRI using long short-term memory recurrent neural networks (1809.05561v1)

Published 14 Sep 2018 in cs.CV

Abstract: Decoding brain functional states underlying different cognitive processes using multivariate pattern recognition techniques has attracted increasing interests in brain imaging studies. Promising performance has been achieved using brain functional connectivity or brain activation signatures for a variety of brain decoding tasks. However, most of existing studies have built decoding models upon features extracted from imaging data at individual time points or temporal windows with a fixed interval, which might not be optimal across different cognitive processes due to varying temporal durations and dependency of different cognitive processes. In this study, we develop a deep learning based framework for brain decoding by leveraging recent advances in sequence modeling using long short-term memory (LSTM) recurrent neural networks (RNNs). Particularly, functional profiles extracted from task functional imaging data based on their corresponding subject-specific intrinsic functional networks are used as features to build brain decoding models, and LSTM RNNs are adopted to learn decoding mappings between functional profiles and brain states. We evaluate the proposed method using task fMRI data from the HCP dataset, and experimental results have demonstrated that the proposed method could effectively distinguish brain states under different task events and obtain higher accuracy than conventional decoding models.

Citations (40)

Summary

We haven't generated a summary for this paper yet.