Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Abstractive Sentence Summarization using Length Controlled Variational Autoencoder (1809.05233v2)

Published 14 Sep 2018 in cs.CL

Abstract: In this work we present an unsupervised approach to summarize sentences in abstractive way using Variational Autoencoder (VAE). VAE are known to learn a semantically rich latent variable, representing high dimensional input. VAEs are trained by learning to reconstruct the input from the probabilistic latent variable. Explicitly providing the information about output length during training influences the VAE to not encode this information and thus can be manipulated during inference. Instructing the decoder to produce a shorter output sequence leads to expressing the input sentence with fewer words. We show on different summarization data sets, that these shorter sentences can not beat a simple baseline but yield higher ROUGE scores than trying to reconstruct the whole sentence.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Raphael Schumann (7 papers)
Citations (20)

Summary

We haven't generated a summary for this paper yet.