Papers
Topics
Authors
Recent
Search
2000 character limit reached

Multimodal neural pronunciation modeling for spoken languages with logographic origin

Published 12 Sep 2018 in cs.CL | (1809.04203v1)

Abstract: Graphemes of most languages encode pronunciation, though some are more explicit than others. Languages like Spanish have a straightforward mapping between its graphemes and phonemes, while this mapping is more convoluted for languages like English. Spoken languages such as Cantonese present even more challenges in pronunciation modeling: (1) they do not have a standard written form, (2) the closest graphemic origins are logographic Han characters, of which only a subset of these logographic characters implicitly encodes pronunciation. In this work, we propose a multimodal approach to predict the pronunciation of Cantonese logographic characters, using neural networks with a geometric representation of logographs and pronunciation of cognates in historically related languages. The proposed framework improves performance by 18.1% and 25.0% respective to unimodal and multimodal baselines.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.