Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Event Graphs: Advances and Applications of Second-Order Time-Unfolded Temporal Network Models (1809.03457v1)

Published 10 Sep 2018 in cs.SI, nlin.AO, physics.data-an, and physics.soc-ph

Abstract: Recent advances in data collection and storage have allowed both researchers and industry alike to collect data in real time. Much of this data comes in the form of 'events', or timestamped interactions, such as email and social media posts, website clickstreams, or protein-protein interactions. This of type data poses new challenges for modelling, especially if we wish to preserve all temporal features and structure. We propose a generalised framework to explore temporal networks using second-order time-unfolded models, called event graphs. Through examples we demonstrate how event graphs can be used to understand the higher-order topological-temporal structure of temporal networks and capture properties of the network that are unobserved when considering either a static (or time-aggregated) model. Furthermore, we show that by modelling a temporal network as an event graph our analysis extends easily to consider non-dyadic interactions, known as hyper-events.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Andrew Mellor (10 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.