2000 character limit reached
Sequential Model Selection Method for Nonparametric Autoregression
Published 6 Sep 2018 in math.ST and stat.TH | (1809.02241v1)
Abstract: In this paper for the first time the nonparametric autoregression estimation problem for the quadratic risks is considered. To this end we develop a new adaptive sequential model selection method based on the efficient sequential kernel estimators proposed by Arkoun and Pergamenshchikov (2016). Moreover, we develop a new analytical tool for general regression models to obtain the non asymptotic sharp or- acle inequalities for both usual quadratic and robust quadratic risks. Then, we show that the constructed sequential model selection proce- dure is optimal in the sense of oracle inequalities.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.