Papers
Topics
Authors
Recent
2000 character limit reached

Sequential Model Selection Method for Nonparametric Autoregression

Published 6 Sep 2018 in math.ST and stat.TH | (1809.02241v1)

Abstract: In this paper for the first time the nonparametric autoregression estimation problem for the quadratic risks is considered. To this end we develop a new adaptive sequential model selection method based on the efficient sequential kernel estimators proposed by Arkoun and Pergamenshchikov (2016). Moreover, we develop a new analytical tool for general regression models to obtain the non asymptotic sharp or- acle inequalities for both usual quadratic and robust quadratic risks. Then, we show that the constructed sequential model selection proce- dure is optimal in the sense of oracle inequalities.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.