Papers
Topics
Authors
Recent
Search
2000 character limit reached

Five lessons from building a deep neural network recommender

Published 6 Sep 2018 in cs.IR, cs.LG, and stat.ML | (1809.02131v2)

Abstract: Recommendation algorithms are widely adopted in marketplaces to help users find the items they are looking for. The sparsity of the items by user matrix and the cold-start issue in marketplaces pose challenges for the off-the-shelf matrix factorization based recommender systems. To understand user intent and tailor recommendations to their needs, we use deep learning to explore various heterogeneous data available in marketplaces. This paper summarizes five lessons we learned from experimenting with state-of-the-art deep learning recommenders at the leading Norwegian marketplace FINN.no. We design a hybrid recommender system that takes the user-generated contents of a marketplace (including text, images and meta attributes) and combines them with user behavior data such as page views and messages to provide recommendations for marketplace items. Among various tactics we experimented with, the following five show the best impact: staged training instead of end-to-end training, leveraging rich user behaviors beyond page views, using user behaviors as noisy labels to train embeddings, using transfer learning to solve the unbalanced data problem, and using attention mechanisms in the hybrid model. This system is currently running with around 20% click-through-rate in production at FINN.no and serves over one million visitors everyday.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.