Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the optimality of the Hedge algorithm in the stochastic regime (1809.01382v3)

Published 5 Sep 2018 in stat.ML and cs.LG

Abstract: In this paper, we study the behavior of the Hedge algorithm in the online stochastic setting. We prove that anytime Hedge with decreasing learning rate, which is one of the simplest algorithm for the problem of prediction with expert advice, is surprisingly both worst-case optimal and adaptive to the easier stochastic and adversarial with a gap problems. This shows that, in spite of its small, non-adaptive learning rate, Hedge possesses the same optimal regret guarantee in the stochastic case as recently introduced adaptive algorithms. Moreover, our analysis exhibits qualitative differences with other variants of the Hedge algorithm, such as the fixed-horizon version (with constant learning rate) and the one based on the so-called "doubling trick", both of which fail to adapt to the easier stochastic setting. Finally, we discuss the limitations of anytime Hedge and the improvements provided by second-order regret bounds in the stochastic case.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jaouad Mourtada (15 papers)
  2. Stéphane Gaïffas (34 papers)
Citations (50)

Summary

We haven't generated a summary for this paper yet.