Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hierarchically Learned View-Invariant Representations for Cross-View Action Recognition (1809.00421v2)

Published 3 Sep 2018 in cs.CV

Abstract: Recognizing human actions from varied views is challenging due to huge appearance variations in different views. The key to this problem is to learn discriminant view-invariant representations generalizing well across views. In this paper, we address this problem by learning view-invariant representations hierarchically using a novel method, referred to as Joint Sparse Representation and Distribution Adaptation (JSRDA). To obtain robust and informative feature representations, we first incorporate a sample-affinity matrix into the marginalized stacked denoising Autoencoder (mSDA) to obtain shared features, which are then combined with the private features. In order to make the feature representations of videos across views transferable, we then learn a transferable dictionary pair simultaneously from pairs of videos taken at different views to encourage each action video across views to have the same sparse representation. However, the distribution difference across views still exists because a unified subspace where the sparse representations of one action across views are the same may not exist when the view difference is large. Therefore, we propose a novel unsupervised distribution adaptation method that learns a set of projections that project the source and target views data into respective low-dimensional subspaces where the marginal and conditional distribution differences are reduced simultaneously. Therefore, the finally learned feature representation is view-invariant and robust for substantial distribution difference across views even the view difference is large. Experimental results on four multiview datasets show that our approach outperforms the state-ofthe-art approaches.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yang Liu (2253 papers)
  2. Zhaoyang Lu (5 papers)
  3. Jing Li (621 papers)
  4. Tao Yang (520 papers)
Citations (53)

Summary

We haven't generated a summary for this paper yet.