Parametric Furstenberg Theorem on Random Products of $SL(2, \mathbb{R})$ matrices (1809.00416v2)
Abstract: We consider random products of $SL(2, \mathbb{R})$ matrices that depend on a parameter in a non-uniformly hyperbolic regime. We show that if the dependence on the parameter is monotone then almost surely the random product has upper (limsup) Lyapunov exponent that is equal to the value prescribed by the Furstenberg Theorem (and hence positive) for all parameters, but the lower (liminf) Lyapunov exponent is equal to zero for a dense $G_\delta$ set of parameters of zero Hausdorff dimension. As a byproduct of our methods, we provide a purely geometrical proof of Spectral Anderson Localization for discrete Schr\"odinger operators with random potentials (including the Anderson-Bernoulli model) on a one dimensional lattice.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.