Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
87 tokens/sec
Gemini 2.5 Pro Premium
36 tokens/sec
GPT-5 Medium
31 tokens/sec
GPT-5 High Premium
39 tokens/sec
GPT-4o
95 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
460 tokens/sec
Kimi K2 via Groq Premium
219 tokens/sec
2000 character limit reached

Dual Conditional Cross-Entropy Filtering of Noisy Parallel Corpora (1809.00197v2)

Published 1 Sep 2018 in cs.CL

Abstract: In this work we introduce dual conditional cross-entropy filtering for noisy parallel data. For each sentence pair of the noisy parallel corpus we compute cross-entropy scores according to two inverse translation models trained on clean data. We penalize divergent cross-entropies and weigh the penalty by the cross-entropy average of both models. Sorting or thresholding according to these scores results in better subsets of parallel data. We achieve higher BLEU scores with models trained on parallel data filtered only from Paracrawl than with models trained on clean WMT data. We further evaluate our method in the context of the WMT2018 shared task on parallel corpus filtering and achieve the overall highest ranking scores of the shared task, scoring top in three out of four subtasks.

Citations (133)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.