Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Content-based feature exploration for transparent music recommendation using self-attentive genre classification (1808.10600v2)

Published 31 Aug 2018 in cs.IR, cs.SD, and eess.AS

Abstract: Interpretation of retrieved results is an important issue in music recommender systems, particularly from a user perspective. In this study, we investigate the methods for providing interpretability of content features using self-attention. We extract lyric features with the self-attentive genre classification model trained on 140,000 tracks of lyrics. Likewise, we extract acoustic features using the acoustic model with self-attention trained on 120,000 tracks of acoustic signals. The experimental results show that the proposed methods provide the characteristics that are interpretable in terms of both lyrical and musical contents. We demonstrate this by visualizing the attention weights, and by presenting the most similar songs found using lyric or audio features.

Citations (1)

Summary

We haven't generated a summary for this paper yet.