Papers
Topics
Authors
Recent
Search
2000 character limit reached

Hypocoercivity of Piecewise Deterministic Markov Process-Monte Carlo

Published 26 Aug 2018 in stat.CO | (1808.08592v3)

Abstract: In this work, we establish $\mathrm{L}2$-exponential convergence for a broad class of Piecewise Deterministic Markov Processes recently proposed in the context of Markov Process Monte Carlo methods and covering in particular the Randomized Hamiltonian Monte Carlo, the Zig-Zag process and the Bouncy Particle Sampler. The kernel of the symmetric part of the generator of such processes is non-trivial, and we follow the ideas recently introduced by (Dolbeault et al., 2009, 2015) to develop a rigorous framework for hypocoercivity in a fairly general and unifying set-up, while deriving tractable estimates of the constants involved in terms of the parameters of the dynamics. As a by-product we characterize the scaling properties of these algorithms with respect to the dimension of classes of problems, therefore providing some theoretical evidence to support their practical relevance.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.