Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Title-Guided Encoding for Keyphrase Generation (1808.08575v5)

Published 26 Aug 2018 in cs.CL

Abstract: Keyphrase generation (KG) aims to generate a set of keyphrases given a document, which is a fundamental task in NLP. Most previous methods solve this problem in an extractive manner, while recently, several attempts are made under the generative setting using deep neural networks. However, the state-of-the-art generative methods simply treat the document title and the document main body equally, ignoring the leading role of the title to the overall document. To solve this problem, we introduce a new model called Title-Guided Network (TG-Net) for automatic keyphrase generation task based on the encoder-decoder architecture with two new features: (i) the title is additionally employed as a query-like input, and (ii) a title-guided encoder gathers the relevant information from the title to each word in the document. Experiments on a range of KG datasets demonstrate that our model outperforms the state-of-the-art models with a large margin, especially for documents with either very low or very high title length ratios.

Citations (106)

Summary

We haven't generated a summary for this paper yet.