Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiobjective Optimization Training of PLDA for Speaker Verification (1808.08344v2)

Published 25 Aug 2018 in cs.SD, cs.LG, and eess.AS

Abstract: Most current state-of-the-art text-independent speaker verification systems take probabilistic linear discriminant analysis (PLDA) as their backend classifiers. The parameters of PLDA are often estimated by maximizing the objective function, which focuses on increasing the value of log-likelihood function, but ignoring the distinction between speakers. In order to better distinguish speakers, we propose a multi-objective optimization training for PLDA. Experiment results show that the proposed method has more than 10% relative performance improvement in both EER and MinDCF on the NIST SRE14 i-vector challenge dataset, and about 20% relative performance improvement in EER on the MCE18 dataset.

Citations (5)

Summary

We haven't generated a summary for this paper yet.