Papers
Topics
Authors
Recent
2000 character limit reached

Fractional Risk Process in Insurance

Published 23 Aug 2018 in math.ST and stat.TH | (1808.07950v2)

Abstract: Important models in insurance, for example the Carm{\'e}r--Lundberg theory and the Sparre Andersen model, essentially rely on the Poisson process. The process is used to model arrival times of insurance claims. This paper extends the classical framework for ruin probabilities by proposing and involving the fractional Poisson process as a counting process and addresses fields of applications in insurance. The interdependence of the fractional Poisson process is an important feature of the process, which leads to initial stress of the surplus process. On the other hand we demonstrate that the average capital required to recover a company after ruin does not change when switching to the fractional Poisson regime. We finally address particular risk measures, which allow simple evaluations in an environment governed by the fractional Poisson process.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.