Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Role of Intonation in Scoring Spoken English (1808.07688v2)

Published 23 Aug 2018 in cs.CL

Abstract: In this paper, we have introduced and evaluated intonation based feature for scoring the English speech of nonnative English speakers in Indian context. For this, we created an automated spoken English scoring engine to learn from the manual evaluation of spoken English. This involved using an existing Automatic Speech Recognition (ASR) engine to convert the speech to text. Thereafter, macro features like accuracy, fluency and prosodic features were used to build a scoring model. In the process, we introduced SimIntonation, short for similarity between spoken intonation pattern and "ideal" i.e. training intonation pattern. Our results show that it is a highly predictive feature under controlled environment. We also categorized interword pauses into 4 distinct types for a granular evaluation of pauses and their impact on speech evaluation. Moreover, we took steps to moderate test difficulty through its evaluation across parameters like difficult word count, average sentence readability and lexical density. Our results show that macro features like accuracy and intonation, and micro features like pause-topography are strongly predictive. The scoring of spoken English is not within the purview of this paper.

Citations (1)

Summary

We haven't generated a summary for this paper yet.