Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Branch Siamese Networks with Online Selection for Object Tracking (1808.07349v3)

Published 22 Aug 2018 in cs.CV

Abstract: In this paper, we propose a robust object tracking algorithm based on a branch selection mechanism to choose the most efficient object representations from multi-branch siamese networks. While most deep learning trackers use a single CNN for target representation, the proposed Multi-Branch Siamese Tracker (MBST) employs multiple branches of CNNs pre-trained for different tasks, and used for various target representations in our tracking method. With our branch selection mechanism, the appropriate CNN branch is selected depending on the target characteristics in an online manner. By using the most adequate target representation with respect to the tracked object, our method achieves real-time tracking, while obtaining improved performance compared to standard Siamese network trackers on object tracking benchmarks.

Citations (5)

Summary

We haven't generated a summary for this paper yet.