Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Outer Approximation With Conic Certificates For Mixed-Integer Convex Problems (1808.05290v1)

Published 15 Aug 2018 in math.OC

Abstract: A mixed-integer convex (MI-convex) optimization problem is one that becomes convex when all integrality constraints are relaxed. We present a branch-and-bound LP outer approximation algorithm for an MI-convex problem transformed to MI-conic form. The polyhedral relaxations are refined with $\mathcal{K}*$ cuts derived from conic certificates for continuous primal-dual conic subproblems. Under the assumption that all subproblems are well-posed, the algorithm detects infeasibility or unboundedness or returns an optimal solution in finite time. Using properties of the conic certificates, we show that the $\mathcal{K}*$ cuts imply certain practically-relevant guarantees about the quality of the polyhedral relaxations, and demonstrate how to maintain helpful guarantees when the LP solver uses a positive feasibility tolerance. We discuss how to disaggregate $\mathcal{K}*$ cuts in order to tighten the polyhedral relaxations and thereby improve the speed of convergence, and propose fast heuristic methods of obtaining useful $\mathcal{K}*$ cuts. Our new open source MI-conic solver Pajarito (http://github.com/JuliaOpt/Pajarito.jl) uses an external mixed-integer linear (MILP) solver to manage the search tree and an external continuous conic solver for subproblems. Benchmarking on a library of mixed-integer second-order cone (MISOCP) problems, we find that Pajarito greatly outperforms Bonmin (the leading open source alternative) and is competitive with CPLEX's specialized MISOCP algorithm. We demonstrate the robustness of Pajarito by solving diverse MI-conic problems involving mixtures of positive semidefinite, second-order, and exponential cones, and provide evidence for the practical value of our analyses and enhancements of $\mathcal{K}*$ cuts.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.